
1Data Structures Department of Computer Science – University of Zakho

Linked list and Double

Linked List

2Data Structures Department of Computer Science – University of Zakho

Singly Linked List

 A data structure consisting of a sequence of nodes.

 Each node stores an element and a link to the next node

 In a linked list we store items non-contiguously rather than in the
usual contiguous array.

next

element

head

A B C D



tail

3Data Structures Department of Computer Science – University of Zakho

Array Vs Linked list

 Arrays are index-based data structure where each element associated
with an index. Linked list relies on references where each node consists of
the data and the references (link) to the next element.

 Basically, an array is a set of similar data objects stored in sequential
memory locations. While a linked list is a data structure that store items
non-contiguously.

 Arrays are of fixed size. In contrast, Linked lists are dynamic and flexible and
can expand and contract its size.

 In an array, memory is assigned during compile time while in a Linked list it
is allocated during execution or runtime.

 Inserting a new element into an array is expensive because a room has to
be created for the new elements and to create room existing elements
have to be shifted. While, elements can be inserted/deleted into a linked
list in a fast and efficient way.

4Data Structures Department of Computer Science – University of Zakho

ARRAY LINKED LIST

The size has to be specified during declaration. No need to specify the size; grow and shrink during

execution.

Element location is allocated during compile time. Element position is assigned during run time.

Stored consecutively Stored randomly (non-contiguously)

Element can be accessed directly or randomly. All

you need is to specify the array index.

Random access is not allowed. We have to access

elements sequentially starting from the first node.

Insertion and deletion of elements are slow as shifting

is required.

Ease of insertion/deletion

Memory required is less Memory required is more

memory utilization is inefficient memory utilization is efficient

Array vs Linked list

5Data Structures Department of Computer Science – University of Zakho

What are the advantages of linked lists over arrays?

What are the drawbacks of linked lists over arrays?

6Data Structures Department of Computer Science – University of Zakho

List ADT

InsertFront(e): Insert a new element e at the beginning of the list.

InsertBack(e): Insert a new element e at the back of the list.

RemoveFront(): Remove the first element from the list.

RemoveBack(): Remove the last element from the list.

Search(e): Search for the element e in the list.

InsertAfter(p, e): Insert a new element e after the position p.

InsertBefore(p, e): Insert a new element e before the position p.

Remove(p): Remove element from the list at the position p.

RemoveAfter(p): Remove the element after the position p.

RemoveBefore(p): Remove the element before the position p.

ReplaceElement(p,e): Replace the element at the position p with e.

7Data Structures Department of Computer Science – University of Zakho

A Simple Linked List Class

We use two classes: Node and List

 Declare a Node class for the nodes

▪ data: int data type in this example.

▪ next: a pointer to the next node in the list.

class Node {

Public:

Node()

Private:

int data // data

Node* next // pointer to next node

};

8Data Structures Department of Computer Science – University of Zakho

A Simple Linked List Class

 Declare List, which contains

▪ head: a pointer to the first
node in the list. Since the
list is empty initially, head
is set to NULL

▪ tail: a pointer to the last
node in the list.

▪ Operations on List

class List {

public:

List() { head=tail=NULL } // Default constructor

~List() // destructor

void InsertFront(int e)

void InsertFront(int e)

int RemoveFront()

int RemoveBack()

void InsertAfter(int p, int e)

int RemoveAfter(int p)

bool IsEmpty() { return head == NULL}

int size()

void DisplayList()

private:

Node* head

Node* tail

}

9Data Structures Department of Computer Science – University of Zakho

Insert at the beginning

void InsertFront(int e)

{

Node* NewNode= new Node()

NewNode -> data= e

// Empty or not?

if (head==NULL)

tail = NewNode

else

NewNode -> next=head

head=NewNode

}

void InsertBack(int e)

{

Node* NewNode= new Node()

NewNode -> next=NULL

NewNode -> data= e

// Empty or not?

if (head== NULL)

head = NewNode

else

tail->next=NewNode

tail=NewNode

}

Insert at the end

A B D 
Head TailK

NewNode

A B D

Head Tail
J

NewNode



10Data Structures Department of Computer Science – University of Zakho

Remove from the beginning

int RemoveFront()

{

// Save a pointer to Node that will be deleted

Node* del = head

int e=del->data

// Adjust head to the next node

head = head->next

// If head is null then make tail to be null too. Empty list.

if (head==NULL)

tail = 0;

// Free the deleted Node

delete del

return e

}

int RemoveBack()

{

// Save a pointer to the Node that will be deleted

Node* del = tail

int e=del->data

if (head == tail) // One Node

head = tail = 0

else

{
// More than one Node

// Find the previous node to the last Node

Node *nptr = head

while (nptr->next != tail)

nptr = nptr->next

// nptr now points to the next-to-last Node

tail = nptr

tail->_next = 0

}

// Delete the Node

delete del

return e

}

Remove from the End

A B D 
Head Taildel =

A B D 

Head del = Tail

KJ

nptr

‘

11Data Structures Department of Computer Science – University of Zakho

InsertAfter(p,e)

InsertAfter(int p, int e)

{

// Save a pointer to the head

Node* nptr=head

// Move nptr to the position p

For(i=1; i<p; i++)

nptr=nptr->next

//Make a new node

Node* NewNode= new Node()

NewNode -> data= e

NewNode->next=nptr->next

nptr->next=NewNode

}

int RemoveAfter(p)

{

// Save a pointer to the head

Node* nptr=head

// Move nptr to the position p

For(i=1; i<p; i++)

nptr=nptr->next

Node* del=nptr->next

int e=del->data

nptr->next=del->next

// Delete the Node

delete del

return e

}

RemoveAfter(p)

12Data Structures Department of Computer Science – University of Zakho

Lab Assignment
• Implement a single linked list.

13Data Structures Department of Computer Science – University of Zakho

Stack with a Singly Linked List

 Singly Linked List implementation

▪ top is stored at the first node

 Space used is O(n) and each operation takes O(1) time.

A B C D Top

14Data Structures Department of Computer Science – University of Zakho

Push and Pop operations

Void Push(int e)

{

Node* NewNode= new Node()

NewNode -> next=top

NewNode -> data= e

top=NewNode

}

Int Pop()

{

if (top==NULL)

throw an error “Stack is Empty”

else

{

// Save a pointer to Node that will be deleted.

Node<T>* del = top

int e=del->data

// Adjust top to the next node

top = top->next

// Free the deleted Node

delete del

}

return e

}

15Data Structures Department of Computer Science – University of Zakho

Queue with a Singly Linked List

 Singly Linked List implementation

▪ front is stored at the first node

▪ rear is stored at the last node

 Space used is O(n) and each operation takes O(1) time

A B C D



Enqueue

Dequeue

front

rear

16Data Structures Department of Computer Science – University of Zakho

Enqueue and Dequeue operations

int Dequeue()

{

// Save a pointer to Node that will be deleted

Node<T>* del = front

int e=del->data

// Adjust front to the next node

front = front>next

// If front is null then make rear to be null too.

if (front==NULL)

rear = 0

// Free the deleted Node

delete del

return e

}

void Enqueue(int e)

{

Node* NewNode= new Node()

NewNode -> next=NULL

NewNode -> data= e

// Empty or not?

if (front== NULL)

front = NewNode

else

rear>next=NewNode

rear=NewNode

}

17Data Structures Department of Computer Science – University of Zakho

Doubly Linked List

 Provides a natural implementation of List ADT

 Nodes store

▪ element

▪ link to previous node

▪ Link to next node

 Special head and tail nodes

next

element

prev

tailhead

A B C D

18Data Structures Department of Computer Science – University of Zakho

Double linked List ADT

InsertFront(e): Insert a new element e at the beginning of the list.

InsertBack(e): Insert a new element e at the back of the list.

RemoveFront(): Remove the first element from the list.

RemoveBack(): Remove the last element from the list.

Search(e): Search for the element e in the list.

InsertAfter(p, e): Insert a new element e after the position p.

InsertBefore(p, e): Insert a new element e before the position p.

Remove(p): Remove element from the list at the position p.

RemoveAfter(p): Remove the element after the position p.

RemoveBefore(p): Remove the element before the position p.

ReplaceElement(p,e): Replace the element at the position p with e.

19Data Structures Department of Computer Science – University of Zakho

class Node

{

public:

Node()

private:

int data

Node* prev

Node* next

};

 We use two classes: Node and Dlist

 Declare a Node class for the nodes

 data: int data type in this example.

 next: a pointer to the next node in the list.

 prev: a pointer to the previous node in the list.

20Data Structures Department of Computer Science – University of Zakho

A Simple Double Linked List Class

 Declare List, which contains

▪ head: a pointer to the first
node in the list. Since the
list is empty initially, head
is set to NULL

▪ tail: a pointer to the last
node in the list.

▪ Operations on Double
linked List

class List {

public:

List() { head=tail=NULL } // Default constructor

~List() // destructor

void InsertFront(int e)

void InsertFront(int e)

int RemoveFront()

int RemoveBack()

void InsertAfter(int p, int e)

int RemoveAfter(int p)

bool IsEmpty() { return head == NULL}

int size()

void DisplayList()

private:

Node* head

Node* tail

}

21Data Structures Department of Computer Science – University of Zakho

Insert at the beginning

void InsertFront(int e)

{

Node* NewNode= new Node()

NewNode -> prev=NULL

NewNode -> data= e

// Empty or not?

if (head==NULL)

tail = NewNode

else {

NewNode -> next = head

head -> prev = NewNode }

head=NewNode

}

void InsertBack(int e)

{

Node* NewNode= new Node()

NewNode -> next=NULL

NewNode -> data= e

// Empty or not?

if (tail== NULL)

head = NewNode

else {

NewNode ->prev = tail

tail->next=NewNode}

tail=NewNode

}

Insert at the end

22Data Structures Department of Computer Science – University of Zakho

Remove from the beginning

int RemoveFront()

{

// Save a pointer to Node that will be deleted

Node<T>* del = head

int e=del->data

// Adjust head to the next node

head = head->next

// If head is null then make tail to be null too. Empty list.

if (head==NULL)

tail = NULL;

else

head->prev=NULL

// deleted the Node

delete del

return e

}

int RemoveBack()

{

// Save a pointer to the Node that will be deleted

Node* del = tail

tail=tail->prev

if (tail == NULL)

head = NULL

else

tail->_next = NULL

// Delete the Node

delete del

return e

}

Remove from the End

23Data Structures Department of Computer Science – University of Zakho

Insertion: insertAfter(p, e)

A B C

p

A B C

p

q

A B e C

p q

e

24Data Structures Department of Computer Science – University of Zakho

Deletion: remove(p)

• We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C

